Skip to content

How to Comply With DOE Standards on Walk-In Coolers and Freezers

Julie_Havenar Julie Havenar | Product Manager – Condensing Units

Emerson Commercial & Residential Solutions

In 2017, the Department of Energy (DOE) passed its final rule on new energy conservation standards for walk-in coolers and freezers (WICFs). The ruling mandated new efficiency requirements on WICFs with dedicated condensing systems in both low- and medium-temperature applications. With enforcement of these requirements now having taken effect, I recently published an article for Contracting Business that explained the implications of the DOE’s ruling. View the full article here and read a summary of it below.

Per the ruling, 20–40 percent energy reductions are now required on WICFs smaller than 3,000 square feet manufactured after the following enforcement dates:

  • January 1, 2020, for WICFs with medium-temperature dedicated condensing systems
  • July 10, 2020, for WICFs with low-temperature dedicated condensing systems

Now that enforcement dates are here, industry stakeholders are tasked with verifying that they are achieving compliance with the DOE’s WICF rule.

Who and what does the ruling apply to?

The ruling directly applies to anyone manufacturing, producing, assembling or importing to certify WICF components. From a refrigeration system standpoint, compliant components refer to dedicated and packaged condensing units (indoor and outdoor) used in both new and retrofit applications, including:

  • Condensing units that are assembled to construct a new WICF
  • Condensing units used to replace an existing, previously installed WICF component (retrofit)
  • Condensing units used within packaged systems

Other components — such as unit coolers (evaporators), doors, panels and lighting — are also within the jurisdiction of the DOE’s WICF ruling.

Contractors and wholesalers can still use and stock condensing units that were manufactured before the DOE enforcement dates for retrofit purposes. All newly manufactured condensing units must be compliant if intended for use in applicable WICF applications, as defined by the DOE’s ruling.

How can you measure efficiency and achieve compliance?

The DOE uses a metric created by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) called the Annual Walk-In Energy Factor (AWEF) to evaluate a WICF system’s energy efficiency. This AWEF calculation is based on “a ratio of the total heat, not including the heat generated by the operation of refrigeration systems, removed, in Btu, from a walk-in box during a one-year period of usage for refrigeration to the total energy input of refrigeration systems, in watt-hours, during the same period.”

Per the DOE, there are several WICF equipment classes below the 3,000 square foot limit that must meet or exceed the minimum AWEF ratings based on capacity and application (e.g., medium- or low-temperature, indoor or outdoor). Condensing unit manufacturers and WICF original equipment manufacturers (OEMs) must follow approved AWEF testing and certification procedures to meet or exceed the DOE standards.

How will the ruling impact you?

From OEMs and wholesalers to contractors and end users, the DOE’s WICF ruling has broad impacts throughout the industry. Because the DOE WICF ruling impacts both new and retrofit equipment, every segment of the commercial refrigeration supply chain will need to understand its implications. Here’s what you need to know:

  • OEMs — need to complete the engineering design cycle, testing and certification to sell new compliant equipment.
  • Contractors — must understand that if they replace a condensing unit with one manufactured after the DOE enforcement dates, it must be an AWEF-compliant unit. However, units manufactured prior to the DOE’s enforcement dates already in inventory may still be used.
  • Wholesalers — must be prepared for changing inventories and begin to carry only AWEF-compliant condensing units that were manufactured after the 2020 enforcement dates for the relevant WICF applications.
  • Design consultants — must be well-versed in the regulatory impacts to advise end users in the selection of energy-compliant, sustainable systems.
  • End users — need to select future-proof equipment that aligns with their long-term refrigeration strategies.

How is Emerson helping OEMs?

As a manufacturer of condensing units for a wide range of refrigeration applications, we manufacture WICF condensing units that have been certified as meeting the DOE’s minimum AWEF requirements. Compliance data is listed in our condensing unit AWEF product literature.

For WICF OEMs, using certified condensing units will help them meet the compliance requirements in one of their primary refrigeration system components. OEMs should be able to combine an Emerson AWEF-compliant condensing unit with any AWEF-compliant unit cooler in order to achieve compliance in a dedicated system.

So if you’re an OEM of walk-in coolers and freezers, you now need to manufacture WICFs that meet the DOE’s minimum AWEF standards. If you’re not sure how to proceed with this compliance process, you may consult with Emerson’s Design Services Network to expedite your product development, design and testing processes.

With our breadth of products, expertise and resources, we can help you achieve compliance and develop sustainable refrigeration strategies for your customers — and our future.

 

Low-GWP Strategies for Achieving CARB Compliance

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

Emerson was recently invited to participate in a webinar series hosted by the North American Sustainable Refrigeration Council (NASRC) aimed at helping retailers prepare for California’s refrigerant regulations and incentives. In the webinar, Diego Marafon, refrigeration scroll product manager at Emerson, and I discussed emerging refrigeration strategies for supporting low-GWP (global warming potential) compliance and hydrofluorocarbon (HFC) reductions while uncovering opportunities to lower operating costs.

Low-GWP Strategies for Achieving CARB Compliance

In the U.S., the California Air Resources Board (CARB) is leading the charge for regulations impacting commercial refrigeration. For large centralized refrigeration systems — which today make up the majority of retail refrigeration — CARB’s current proposal would require new systems with more than 50 pounds of refrigerant to use refrigerants below 150 GWP. As a result, CO2 is a primary refrigerant choice for operators seeking to stay with a large centralized system and meet CARB’s proposed regulation.

But as retailers evaluate new system architectures, they also have an expanding variety of decentralized and distributed options to consider. What’s more, CARB’s latest proposals provide new approaches for achieving HFC reductions that are giving retailers the option to remodel, rather than invest in all-new refrigeration systems for their fleet of stores. These proposals include:

  • Greenhouse gas emission potential (GHGp) reduction by 55% — Requires the total GHGp of all refrigeration systems in all stores to be 55% below the 2018 baseline by 2030, where GHGp equals the sum of the refrigerant charge times GWP — or GHGp = ∑(charge X GWP). This is a per-company target which gives retailers some flexibility in achieving compliance. As retailers retrofit their stores, they’ll receive credits for refrigerant charge and GWP reductions. But retailers must have the abilities to track, report each store’s GHGp baselines as well as document and verify any equipment changes.
  • Weighted average GWP (WAGWP) reduction < 1,400 — Requires the WAGWP of each retailer to be less than 1,400 by 2030. It’s calculated by finding the sum of the charge times GWP in every system in every store, divided by the total charge — or weighted average GWP = ∑(charge X GWP) / ∑ This approach allows retailers to aim for a fixed target — without the need for tracking a company baseline — while giving them the option to only retrofit the stores needed to meet the 1,400 GWP target. Retailers may need to apply this equation to multiple retrofit scenarios to successfully deploy this strategy. Simply put, they’ll need to do the math and figure out how to best reach this target.

Weighing your retrofit options

In the webinar, we discussed each of these approaches and ran the numbers to show how retailers could take a long-term view of their store fleet strategies and make modifications to achieve their goals — utilizing refrigerant changes, system retrofits or installing new refrigeration systems. Using a WAGWP calculator developed by Emerson, we demonstrated different strategies for achieving CARB compliance, providing cost projections for each option. If you’re interested in learning more about the WAGWP calculator, you can contact your salesperson, or visit the contact us page.

For this exercise, we looked at a hypothetical scenario of a California retailer with 25 stores, 66 total refrigeration systems and a WAGWP of 2,715. Then we evaluated three different retrofit options and calculated their impacts:

  • Refrigerant change from R-404A to R-448A — By changing out the refrigerant in all 25 stores, the retailer could achieve a WAGWP of 1,383 (nearly a 50% GHGp reduction). The total CapEx for the changes were $3M, with a cost per WAGWP reduction of $2.2k.
  • Convert half the stores to a new CO2 system — By installing new CO2 systems in 12 of the stores and leaving the other 13 untouched, the retailer could achieve a WAGWP of 1,277 (or a 54% GHGp reduction). The total CapEx for the changes were $27.3M, with a cost per WAGWP reduction of $19k.
  • Hybrid approach — By converting 20 systems to R-448A and installing 28 new scroll booster systems (with R-513A) — leaving 18 systems as is — the retailer could achieve a WAGWP of 1,520 (or 55% GHGp reduction). The total CapEx for the changes were $15M, with a cost per WAGWP reduction of $13k.

These scenarios demonstrated how to calculate system retrofit and remodel impacts while showing the multiple alternatives for implementing lower-GWP remodel strategies. It’s important to realize that in California, CARB has incentive programs to help retailers offset the cost of making these system changes.

But CARB is just one piece of a dynamic regulatory landscape — which includes energy, environmental and food safety regulations within varying regional, national and global jurisdictions — that continues to drive changes in refrigeration equipment and architectures. In response, Emerson is committed to developing a full spectrum of low-GWP refrigerant technologies, including CO2, R-290 and hydrofluoroolefins (HFOs), as well as lower-GWP HFC A1 refrigerants that are still in use. Most recently, we’ve expanded our offerings to support the industry’s need for more flexible, distributed architectures which deliver both high energy efficiencies and low-GWP ratings.

To learn more about using Emerson’s tools for calculating the impacts that system retrofits or remodels would have on your store fleet’s environmental footprint, view this NASRC webinar with the title of, “Emerson Technology Solutions.”

 

Strengthening the Cold Chain With Connected Technologies

AmyChildress Amy Childress | Vice President of Marketing & Planning, Cargo Solutions

Emerson Commercial & Residential Solutions

Maintaining food quality and safety is a primary challenge facing retailers who rely on the global cold chain to fulfill the growing demand for fresh food offerings. New technologies are emerging to provide improved visibility and traceability of perishable items, help stakeholders communicate, and ensure adherence to food safety best practices and/or regulatory requirements. I recently contributed to an article by Progressive Grocer which speaks to the importance of leveraging these technologies to achieve those goals and maintain an unbroken cold chain.

With the Food and Drug Administration’s (FDA) recent announcement of its New Era of Food Safety initiative, the technology that provides traceability and other key services is becoming more important than ever. This rapidly advancing technological toolset includes internet of things (IoT) condition sensors, temperature-sensitive flexible barcodes and blockchain. Combined, these tools are helping growers, shippers and retailers help ensure the freshest and safest possible product for consumers.

As I stated in the article: “This is especially critical with the global demand for year-round access to perishable products. Achieving this feat can require fresh produce to be transported by land, sea and air, encompassing the point of harvest, processing, cold storage and distribution — all before it ever begins the last-mile delivery to a store or restaurant.” In fact, a perishable shipment may be subject to as many as 20 to 30 individual steps and multiple changes of ownership before it reaches its destination.

Gaining visibility with IoT monitoring and tracking infrastructures

To better manage the sheer complexity of this cold chain journey, stakeholders are leveraging connected IoT monitoring technologies and tracking infrastructures. Operators now have better potential visibility into each step of food’s journey — even the possibility for comprehensive cold chain traceability. These tools — such as Emerson’s GO Real-Time Trackers and GO Loggers combined with our cloud-based Oversight online software portal — are giving stakeholders at each point the abilities to monitor and track a variety of conditions necessary for preserving food quality, including: temperature, humidity, CO2 levels, lighting and much more.

As I pointed out in the article, one of the key values of this technology is the ability to receive email or text notifications in real time when an in-transit shipment falls out of the ideal temperature range: “This allows suppliers to correct the issue promptly with the carrier or even reroute the shipment to a nearby location and preserve that perishable cargo.” Retailers and growers can also track these in-transit shipments to monitor delivery timelines and ensure that carriers are following proper shipping routes. Retailers rely on these devices to help them validate produce quality on receipt and monitor all their suppliers to ensure they’re meeting the freshness standards that their customers demand.

With Emerson’s connected monitoring and tracking infrastructure, data from our GO Real-Time Trackers and GO Loggers is pushed to the cloud and presented in Oversight, giving our customers both visibility and analysis of critical cold chain information with which to make better supply chain decisions.

End-to-end cold chain certainty

Of course, Emerson also provides the critical refrigeration components, controls and compressors to help retailers ensure optimal refrigeration temperatures in their refrigerated cases, walk-in coolers and freezers. Our advanced facility and asset monitoring systems provide real-time access to the critical information that retailers need to track, triage and quickly respond to issues that could potentially impact food safety and quality. What’s more, our automated temperature monitoring and recording devices help operators eliminate the need for time-consuming manual documentation — giving them the abilities to access on-demand reporting as needed for food safety compliance purposes and provide historical cold chain data.

 

Why Refrigerant Leak Repair Still Matters

Jennifer_Butsch Jennifer Butsch | Regulatory Affairs Manager

Emerson Commercial & Residential Solutions

Proactive refrigerant management isn’t just good for the environment. It is also sound business practice. I was recently interviewed by ACHR’s The News magazine on the Environmental Protection Agency’s (EPA) partial rollback of Section 608 provisions for appliance leak repair and maintenance. You can read the full article here  and more on our perspective below.

Why Refrigerant Leak Repair Still Matters

In February, the EPA eliminated leak repair and maintenance requirements on appliances containing 50 or more pounds of substitute refrigerants, such as hydrofluorocarbons (HFCs). As a result, equipment owners are no longer required to:

  • Repair appliances that leak above a certain level
  • Conduct verification tests on repairs
  • Periodically inspect for leaks
  • Report chronically leaking appliances to the EPA
  • Retrofit or retire appliances that are not repaired
  • Maintain related records

But just because these leak repair provisions are no longer required doesn’t mean food retailers should ignore these best practices. There is a price to pay for refrigerant leakage that extends far beyond environmental damage. Detecting, repairing and even proactively reducing refrigerant leaks will help operators avoid a variety of associated costs.

The high cost of refrigerant leaks

The rollback of legal penalties for refrigerant leaks does not change the math on the operational costs. An average food retail store leaks an estimated 25 percent of its refrigerant supply each year, which can quickly add up to thousands of dollars in lost refrigerant. In addition, retailers must consider the maintenance and equipment costs. Persistently low levels of refrigerant can cause:

  • Excess compressor wear and tear
  • Reduced compressor and system capacities
  • Premature system failures
  • Double-digit efficiency losses

Left unchecked, even minor leaks can eventually lead to equipment failure. When this occurs, emergency repair costs are often only the tip of the iceberg. Operators may also be looking at revenue loss from food waste, business disruptions and reputational damage.

Proactive refrigeration management

So what can operators do to prevent leaks, even in the absence of federal requirements?

In the near term, they can — and should — implement rigorous leak detection and repair programs. Refrigerant leaks can occur anywhere in a system. Thus, an effective refrigerant leak detection program will combine monitoring, detection and notification.

Multiple technologies are available to support these efforts, including active and passive devices for monitoring and detection. Internet of things (IoT) capabilities allow for remote monitoring, enabling operators to focus on more pressing tasks. And with the integration of data analytics platforms, operators can uncover trends, identify persistent problem areas, and make informed choices about equipment upgrades and replacement options.

Over the longer term, operators can adopt refrigeration architectures that reduce the potential for refrigerant leakage in the first place. Legacy, centralized direct-expansion rack systems are high leak-rate offenders. That shouldn’t be a surprise; with thousands of feet of pipe, hundreds of joints and large refrigerant charges, there are many opportunities for leaks to occur.

In contrast, distributed micro-booster, indoor distributed and outdoor condensing unit (OCU) architectures experience lower leak rates by design. As an added benefit, they offer more options for lower-GWP alternative refrigerant use. This is a crucial advantage for operators who want to position their business for future regulations.

Sustainable best practices

The EPA’s Section 608 leak repair provisions were good for the environment. They are also part of a larger body of best practices for optimizing HVACR equipment. As states take the lead in adopting standards for leak detection and control, operators may find the rollback of these regulations to be short-lived.

Emerson is proud to take a lead in developing sustainable and cost-effective refrigeration systems and supporting technologies. Operators and original equipment manufacturers count on us to deliver strategies and solutions that anticipate emerging trends and regulations. From pioneering refrigeration architectures to refrigerant leak detection tools, we are committed to providing operators with the capabilities to meet their sustainability and operational goals today and into the future.

 

 

 

Emerson’s Transportation Solutions Business Compliant With DCSA’s New IoT Recommended Standards

Brian_Robertson Brian Robertson | Vice President, Sales & Support

Emerson Transportation Solutions

Worldwide connectivity helps keep the global food chain intact. According to The Economist, four-fifths of the planet’s 8 billion mouths are fed in part by imports. Fleets in the air, on the sea and on the road connect tens of millions of farms to hundreds of millions of shops and kitchens.

Transportation Solutions

Emerson’s Transportation Solutions business has a proven reputation for tracking this freight, regardless of where it is within its journey. The world’s leading shipping companies, truck lines and refrigerated container manufacturers count on these refrigeration products and monitoring solutions. Building upon the smart communications it provides, Emerson’s Transportation Solutions business now supports Digital Container Shipping Association’s (“DCSA”) new internet of things (“IoT”) connectivity standards for shipping containers. DCSA is a nonprofit group founded by major ocean carriers to digitize and standardize the container shipping industry.

These recommendations focus on ensuring interoperability within the industry on the standardized methods for communications of IoT devices on container to IoT gateways at sea and on land. These universally adaptable standards align internal radio communication protocols for IoT gateways, addressing the network connectivity requirements for reefer containers, dry containers, and the RFID registration of these containers.

With these recommendations in place, carriers and supply chain participants will be one step closer to providing customers with an uninterrupted flow of relevant information regarding the whereabouts of containers and the status of their contents at any point along their journey.

For more information, visit https://dcsa.org/.

%d bloggers like this: