Skip to content

Evaluate System Lifecycle Performance When Making the Decision to “Go Green”

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

I recently contributed to an ACR News publication with an article which addressed the topic of “green refrigeration.” The article, entitled A Greener Landscape for Commercial Refrigeration, explored why and how operators are making the transition to more eco-friendly refrigeration systems. View the full article here or read a summary below.

As global and national refrigeration industry dynamics continue to rapidly evolve, more business owners and supermarket operators are seeking new refrigerant and equipment alternatives. Ever-changing refrigerant and energy regulations, combined with an increased awareness of the environmental impacts of legacy refrigeration systems, are prompting more stakeholders to explore the green and growing edges of the refrigeration landscape.

But because commercial refrigeration systems can potentially be in service for decades, end users must carefully consider not only today’s regulatory requirements, but also tomorrow’s potential constraints. This means making the most informed equipment decisions possible with the goal of maximizing the investment throughout the system’s lifecycle. Doing so requires a fundamental understanding of the environmental impacts and financial considerations of a commercial refrigeration system.

Total equivalent warming impacts
While today’s regulations are primarily focused on reducing the global warming potential (GWP) from direct emissions of hydrofluorocarbon (HFC) refrigerants, it’s also important to remember that the total equivalent warming impact (TEWI) also accounts for indirect emissions — or the amount of greenhouse gases generated from the refrigeration system’s energy consumption. It’s estimated that these indirect emissions represent the majority of total climate impacts.

Only by evaluating both energy consumption and refrigerant GWP — including leaks and disposal — over the lifetime of a system can we estimate a system’s full lifecycle climate performance (LCCP).

Environmental and financial sustainability
Operators who are considering going green must also factor in the financial viability and sustainability of new or upgraded refrigeration systems. This means determining not only first costs and installation expenses, but also estimating the long-term maintenance and service requirements.

For manufacturers of these new eco-friendly equipment, components and systems, their task is twofold: 1) utilize lower-GWP refrigerants to meet regulatory requirements, while 2) minimizing ownership and operating costs.

Building a greener future
Like much of the commercial refrigeration industry, Emerson believes that the adoption of environmentally responsible, financially viable refrigeration systems will become more commonplace over the next decade. After all, there is a historic precedent for refrigerant phase-downs, including the ban on ozone-depleting substances which began in the 1990s and is now coming to fruition. Under the authority of the Montreal Protocol and the Environmental Protection Agency’s Clean Air Act, ozone- depleting substances like R-22 will no longer be manufactured or imported into the U.S. as of Jan. 1, 2020.

Today, the global reduction of fluorinated gases (aka F-gases) is being driven by the Kigali Amendment to the Montreal Protocol, which has now been ratified by more than 80 countries. As federal regulations continue to take shape and regional mandates become more prevalent throughout the U.S., it seems inevitable that the industry will eventually make the transition to more eco-friendly refrigeration systems.

Emerson has helped support this transition for many years by working with early adopters of low-GWP refrigerants and supporting technologies. Those operators who are taking proactive steps now will have a head start on this transition and be able to provide insights from which the rest of the industry can learn.

How Emerson Is Taking on Today’s Most Pressing Refrigeration Challenges with Copeland Scroll ™

Phil Moeller | Vice President – Product Management, Refrigeration
Emerson Commercial & Residential Solutions

Since its introduction nearly 30 years ago, the Copeland Scroll has revolutionized the standards for refrigeration performance and reliability. An article from the E360 Product Spotlight provides an overview of Emerson’s recent innovations for the Copeland Scroll. Click here to read the article in its entirety.

How Emerson Is Taking on Today’s Most Pressing Refrigeration Challenges with Copeland Scroll ™

The commercial refrigeration industry has changed drastically in recent years due to new regulations and consumer trends. Operators demand an ever-widening spectrum of applications, from large centralized systems to small walk-in freezers and coolers. Energy efficiency and environmental sustainability have become business priorities. And digital technologies promise connected, predictable visibility to refrigeration systems.

That’s why Emerson’s research and development (R&D) teams for Copeland Scroll have come up with innovative technologies that optimize performance and reliability, helping you take on these emerging challenges.

Innovations that bring more power, flexibility and advanced capabilities to the Copeland Scroll lineup

Wider application and temperature ranges: We’ve expanded the ranges of commercial applications for Copeland Scroll compressors, now spanning fractional ¾ horsepower ZF*KA compressors designed for low temperatures up to the 17 horsepower K5 compressor for low- and medium-temperature applications. You’ll find a variety of solutions within this horsepower range for your low-, medium- and extended medium-temperature applications.

Inherently robust product designs: Minimalistic, fully hermetic Copeland Scroll designs use up to 70 percent fewer moving parts than semi-hermetic, reciprocating compressors. That means they have no complex suction and discharge valves; can start under any system load; eliminate many vibration issues; improve liquid and debris handling; and, with their compact and lighter-weight designs, make servicing easier.

Energy compliance: Original equipment manufacturers (OEMs) rely on Copeland Scroll technology to help meet the Department of Energy’s annual walk-in efficiency factor (AWEF) ratings for walk-in coolers and freezers. Copeland Scroll’s inherent efficiency and reliability are the foundation of AWEF-compliant condensing units in leading OEM equipment design strategies.

Alternative, lower-GWP refrigerants: The Copeland Scroll lineup includes many compressors rated for use with lower-GWP synthetic and natural refrigerant alternatives. We continue to evaluate and test emerging refrigerants to help operators achieve their performance and sustainability goals.

Performance-enhancing technologies: Emerson R&D teams for Copeland Scroll lead the industry in rolling out performance-enhancing innovations, from digital modulation capabilities to liquid- and vapor-injection options and lower condensing operation. These technologies improve system reliability and capacity while meeting today’s demanding regulatory requirements.

Smart diagnostics and protection: Today, many Copeland Scroll compressors are equipped with on-board CoreSense™ Diagnostics. CoreSense provides advanced motor performance monitoring and protection, diagnostics, power consumption measurements and communication capabilities. Other compressors can be retrofitted with our panel-mounted, remote diagnostic systems. This active protection technology is driven by advanced algorithms and fault detection logging and histories, helping enable technicians to quickly diagnose and repair systems.

Product development partnerships: As an Emerson customer of Copeland Scroll, you have access to Emerson’s extensive capabilities to support your own product development efforts, collaborating with us on application engineering; design, testing and certification services; proof of concept; and application development.

Closer ties to the industry’s largest support network: Copeland Scroll compressors are backed by a network of more than 1,000 Copeland-authorized locations and over 600 certified Copeland technical specialists — a base of operations that can quickly deliver the products and technical assistance you need. Our new, fully featured Copeland™ Mobile app connects to the Emerson Online Product Information database for on-the-go access to 30 years of compressor products and specifications. It can help you quickly troubleshoot and diagnose issues and connect to our wholesaler network to check local availability of replacement products.

 

With a legacy of innovation and an eye toward the future, you can be sure that Emerson will continue to evolve to meet today’s rapidly changing commercial refrigeration requirements. To learn more about our innovations and emerging technologies, read the full E360 article.

 

Evaluating Supermarket Energy Management Strategies

JamesJackson_Blog_Image James Jackson | Business Development Manager
Emerson Commercial & Residential Solutions

I recently authored an article for Facility Executive that discussed how energy management systems (EMS) are helping to reshape how the food retail industry approaches energy efficiency and demand planning. Read the full article here.

Evaluating Supermarket Energy Management Strategies

Corporations and consumers alike are always looking for ways to reduce energy costs. Nowhere is this more applicable than in supermarkets, where chains have many energy optimization opportunities among refrigeration, HVAC and lighting systems. The average 50,000 square foot store incurs $200,000 in annual energy costs, resulting in 1,900 tons of CO2 emissions (the equivalent of 360 vehicles) in one year. Of these costs, refrigeration and lighting account for more than 50 percent of total energy usage.

As the energy and utilities sectors continue to evolve, traditional approaches to energy management and demand response must also adapt to the changing landscape. Fortunately, with advances in EMS and controls technologies, food retailers can apply automation to achieve energy best practices. These tools not only provide full building ecosystem optimization but also help operators capitalize on the potential for energy savings via utility energy incentives and available demand management opportunities.

Consumption and Demand — The Difference

Understanding the difference between consumption and demand is essential for energy management planning. Consumption is measured in kilowatt hours (kWh) and refers to the amount of energy used during a billing period. Demand represents the instantaneous energy load that a commercial customer (or building) places on the grid. Utility providers use this for base infrastructure planning and to determine total load requirements of the electrical system. When demand increases, providers must draw from additional — and often more expensive — resources like coal and other fossil fuels.

Utilities measure demand in kilowatts (kW) based upon the actual power a consumer draws. Because demand costs can be potentially higher than consumption — with charges ranging from a few to several dollars per kW — demand can account for a significant portion of a monthly bill.

Evolving Demand Response

Due to the rise of renewable generation, utility providers across the country are rethinking how to develop and deploy demand response programs. Researchers at the Lawrence Berkeley National Laboratory (LBNL) in California conducted a study that evaluated the state’s energy dynamics. The study showed that California is benefiting from an increase in solar power and the continued shift of demand from midday to evening hours. The addition of smart thermostats and controls in commercial and residential sectors is also helping the state optimize energy consumption.

The LBNL study findings are helping researchers understand the amount of flexible customer load available and evaluate different methods for getting customers to change energy consumption habits, such as time of use, peak pricing programs, and day- and hour-ahead energy market plans.

The opportunity to shift demand is seen as the greatest contributor to future grid flexibility — and potentially one of the biggest opportunities for energy savings.

Energy Management Solutions

Today, advances in EMS software and controls platforms are helping operators connect with utilities and automate their energy management programs. Among other emerging strategies used by supermarket operators are self-generation via thermal and battery storage and grid-interactive buildings.

Self-generation via Thermal and Battery Storage

Most utility providers encourage consumers to implement proven thermal and battery storage options to help shift demand from peak to off-peak hours. The concept of self-generation is simple: thermal (ice) creation and battery charging take place during off-peak hours to store energy that can be used during peak hours to help utilities offset demand.

Grid-interactive Buildings

As IoT-enabled EMS and smart devices provide unprecedented connectivity between consumers and utility companies, opportunities for greater cooperation and energy optimization are also on the rise. At the Department of Energy (DOE), the Building Technology Office (BTO) is conducting research through its Grid-interactive Efficient Building (GEB) initiative. One of their primary goals is to enable buildings to become more responsive to the electric grid conditions.

These and other tools can help facilities improve energy efficiency and achieve operational success in a quickly evolving energy market. At Emerson, we’re helping to simplify energy management challenges with smart EMS software and proven controls platforms designed to help supermarket and restaurant operators connect with utilities and automate energy-saving best practices.

E360 Breakfast at AHR: HVACR Refrigerants & Regulations Discussion

RajanRajendran2 Rajan Rajendran | V.P., System Innovation Center and Sustainability

Emerson Commercial & Residential Solutions

Before the doors open at the AHR Expo on February 4, join us at 8 a.m. for an interactive E360 Breakfast discussion on HVACR refrigerants and regulations. You’ll hear about several industry trends to keep your eyes on over the next few years.

E360 Breakfast at AHR: HVACR Refrigerants & Regulations Discussion

Refrigerant regulations are in constant flux, making it extremely difficult to stay current on the latest changes and information. Emerson’s regulation experts, Rajan Rajendran and Jennifer Butsch will highlight some of the latest regulatory updates and refrigerant options to help get you up to speed.

In addition, Emerson’s Ken Monnier will explore several industry trends that could potentially impact you over the next decade.

During this interactive discussion, you’ll have opportunities to ask some of your most pressing questions and share thoughts on measures that attendees might leverage to address today’s challenges.

E360 Breakfast: HVACR Refrigerants & Regulations Discussion

When                                                   Where

Tuesday, February 4                         Orange County Convention Center

8 – 9:30 a.m.                                     Room: W205 (West Concourse), Level II

9800 International Drive

Orlando, FL  32819

Afterward, you’ll be ready to hit the AHR Expo floor. We hope your first stop is the Emerson booth (#2101), where you can take a close look at some of our exciting technologies:

 

  • Copeland™ AWEF compliant condensing units for walk-In coolers and freezers — take energy efficiency regulations out of the equation with condensing units certified to meet AWEF requirements.
  • Copeland Scroll™ Digital Outdoor Refrigeration Unit, X-Line Series learn how precise temperature control and significant energy savings are made possible with latest innovation in variable capacity modulation technology.
  • Copeland™ Modular Indoor Solution — see how our AHR Innovation Award finalist provides an all-in-one micro-distributed solution for food retailers, restaurants and convenience stores with display cases and walk-in boxes.
  • Supervisory Controls — learn why retailers large and small rely on this total-facility platform to monitor, optimize and control their refrigeration systems, HVAC, lighting and more.
  • Connect+ Enterprise Management Software — get an inside look at our newest IoT-enabled software suite designed provide advanced operational efficiencies across a multi-site retail network.

Register now to reserve your seat at this informative, idea-filled E360 Breakfast — a great way to start your day at AHR!

 

Evaluating Sustainable Supermarket Refrigeration Technology

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

Progressive Grocer recently interviewed me about Emerson’s and the commercial refrigeration industry’s efforts to help promote the emergence of more sustainable, refrigeration technologies. The complete article can be found here.

Evaluating Sustainable Supermarket Refrigeration Technologyd

It’s not news that supermarkets are under continuous regulatory pressure to not only lower the energy demand of their refrigeration systems, but also to make the transition to low global warming potential (GWP) and zero ozone depletion (ODP) systems. The permanent ban on R-22, long the industry standard, becomes official on January 1, 2020.

What is news is how intensely suppliers and retailers are focused on and sharing information on sustainability initiatives intended to sharply reduce the costs and impact of their refrigeration systems, both in anticipation of future regulations and to attain long-term economic and environmental sustainability.

As different manufacturers approach these issues with a variety of new technology options, the challenge becomes defining new standards for sustainable products and systems, so that the industry can converge on proven, synergistic solutions.

Taking a full system’s approach to sustainability

At Emerson, our approach to sustainability is based on a multi-faceted goal. First, sustain the environment through lower-GWP refrigerant and technology choices. Second, sustain companies financially from a total cost of ownership perspective. And third, focus on energy efficiency as a path to sustainability through forward-looking engineering and the implementation of new monitoring and control technologies, particularly Internet of Things (IoT) capabilities.

At Emerson, we take a full system approach to evaluate the sustainability of new and existing technologies in the context of multiple key selection criteria. This is part of Emerson’s “Six S’s” approach to refrigeration sustainability: simple, serviceable, secure, stable, smart and sustainable.

(To learn more about the rationale, methodology, application and impact of Emerson’s “Six S’s” philosophy, read the blog found here.)

Exploring the potential of natural refrigerants

One area of Emerson’s focus is our work to better understand and then implement emerging natural refrigerants, such as R-744 (carbon dioxide) and R-290 (propane) for different types of applications.

Recent innovations include the development of an integrated display-case architecture. This R-290 system is designed to use one or more compressors and supporting components within cases, removing exhaust heat through a shared water loop — incorporating our expertise in R-290 compressors and our experience with stand-alone condensing units. We’ve also developed a full range of CO2 system technologies, including valves and controls for both small and large applications. For cold storage applications, our modular refrigeration units utilize both CO2 and ammonia-based refrigerant configurations.

Early adopters pave the road to the future

Over the past decade, there have been many retailers committed to testing sustainable refrigeration technologies and low-GWP refrigerants in their stores. For example, the article quoted Wayne Posa of Ahold Delhaize USA, who discussed the company’s transition from R-22, stating: “Food Lion has been committed to zero-ODP and low-GWP refrigerants for several years.”

Different manufacturers are taking different approaches to studying and applying refrigerants and technologies to reach that goal, from the use of hydrofluoroolefin (HFO) refrigerants (such as R-448A and R-450) in distributed refrigeration systems to proven CO2-based system architectures.

In the area of refrigerants — let alone technologies in development for increased energy efficiency and remote monitoring and control — the refrigeration industry continues its search for a new standard. As Brian Beitler of Coolsys, a consulting and contract engineering firm explains, “Between transcritical, ejector systems, NH3 over CO2, cascade, propane, multidistributed and hybrid gas coolers, the jury is still out.”

As we move closer to the most sustainable standard for refrigerants, Emerson continues its work on total refrigeration system sustainability — in refrigerants, energy efficiency, and control — as guided by our “Six S’s” philosophy. This work is our road map to the future.

 

%d bloggers like this: