Skip to content

Posts from the ‘Food Safety’ Category

Refrigerant Regulations: 2020 Update

RajanRajendran2 Rajan Rajendran | V.P., System Innovation Center and Sustainability

Emerson Commercial & Residential Solutions

For several years, the regulatory landscape regarding the governance of refrigerants has been constantly shifting. Already in 2020, we’ve seen developments, both on the state and federal levels in the U.S., which will have significant impacts on the commercial refrigeration and air conditioning sectors for years to come. We recently published an E360 article that lays out these regulatory developments in detail; this blog is a condensed summary of its key points.

Global, national and state regulations have targeted the phase-down of hydrofluorocarbon (HFC) refrigerants with high global warming potential (GWP) and replacing them with lower-GWP options. But while emerging refrigerants — such as natural alternatives and new synthetic blends of HFCs and hydrofluoroolefins (HFOs) — offer environmental improvements, they are not without their operational caveats. Making the transition to these new alternatives will impact refrigeration architectures and raise concerns about performance and safety.

This dynamic combination of factors creates a complex regulatory mix that industry stakeholders have been actively working to resolve. To better understand the full context, we’ve summarized the major regulatory developments in the U.S. and abroad.

Update on EPA SNAP Rules 20 and 21

In 2017, the U.S. District Court of Appeals for the D.C. Circuit ruled to vacate the Environmental Protection Agency’s (EPA) Significant New Alternative Policy (SNAP) Rule 20 — ruling that the EPA did not have authority to require those who had already moved out of ozone depleting substances (ODS) to phase down to lower-GWP HFCs under its Clean Air Act (CAA). Subsequently, the EPA published a “Notification of Guidance,” stating that it would not enforce any of the HFC restrictions set forth in SNAP Rules 20 and 21 when drafting future regulations.

The Natural Resources Defense Council (NRDC) filed a lawsuit claiming that the 2018 Guidance was overly broad because it did not distinguish between ODS and HFC replacements, and that the EPA had not followed proper public notice-and-comment procedures to seek stakeholder input.

On April 7, 2020, the Court of Appeals granted the NRDC’s petition, stating that the EPA guidance was procedurally inappropriate. The court agreed that the initial 2017 decision required only a partial vacatur — not entirely eliminating the requirements SNAP Rules 20 and 21.

It’s important to remember that the industry had already made great strides toward meeting the mandates of SNAP Rule 20 after its passing in 2015, but these ongoing legal entanglements have left the U.S. without a clear path forward in terms of a unified refrigerant strategy. While the majority of the industry still supports the move toward a more sustainable and environmentally friendly future, court rulings around SNAP Rules 20 and 21 have created many questions about what the path forward will look like.

HFCs excluded from refrigerant management requirements

In response to the 2017 Court of Appeals ruling, the EPA also has rolled back other HFC-related regulations. Specifically, it excludes HFCs from the leak repair and maintenance requirements for stationary refrigeration equipment, otherwise known as Section 608 of the CAA. Other beneficial provisions of Section 608 — including the certified technician program and the refrigerant recovery and reclamation rules — are still in effect.

California continues to set the pace

The passing of California Senate Bill 1383 (the Super Pollutant Reduction Act) in 2016 called for Californians to reduce F-gas emissions (including HFCs) by 40 percent by 2030. Since then, the California Air Resources Board (CARB) had been using EPA SNAP Rules 20 and 21 as the bases of its HFC phase-down initiatives. The subsequent passing of California Senate Bill 1013 (the California Cooling Act) in 2018 mandated the full adoption of SNAP Rules 20 and 21 as they read on Jan. 3, 2017; the law is currently in effect.

To meet HFC reductions of 40 percent by 2030, CARB continues to hold public workshops and invited industry stakeholders to comment on the details of its second phase of proposed rulemaking, which currently states:

 

  • Refrigerants with a GWP greater than or equal to 150 will not be allowed in new stationary refrigeration systems charged with more than 50 pounds, effective Jan. 1, 2022.
  • Existing food retail facilities with refrigeration systems charged with more than 50 pounds must collectively meet a 1,400 GWP average or 55 percent greenhouse gas emission potential (GHGp) reduction over 2018 levels by 2030.
  • Refrigerants with a GWP greater than or equal to 750 will not be allowed in new stationary air conditioning equipment, effective Jan. 1, 2023.
  • Refrigerants with a GWP greater than or equal to 750 will not be allowed in chillers (including process chillers) greater than -15 °F and ice rinks, effective Jan. 1, 2024.
  • Refrigerants with a GWP greater than or equal to 2,200 will not be allowed in new chillers ranging from
    -15 °F through -58 °F, effective Jan. 1, 2024.

 

CARB is planning to finalize these rulemaking proposals this summer and is still seeking industry input.

More states join U.S. Climate Alliance

In 2017, a coalition of 16 states and Puerto Rico emerged to form the U.S. Climate Alliance, with a shared commitment of reducing short-lived climate pollutants (SLCPs) and HFCs. Since then, the Alliance has grown to 25 members — comprising more than 55 percent of the U.S. population and an $11.7 trillion economy. Several states have announced plans to follow California’s lead on HFC phase-downs.

Refrigerant safety standards and codes under review

Meeting the targeted emissions reductions in California likely will require the use of low-GWP refrigerants. But many of these low-GWP, HFO refrigerants are classified as A2L, or mildly flammable. The natural A3 refrigerant R-290 (propane) also is becoming more widely used in low-charge, self-contained commercial refrigeration applications. Currently, national and global governing agencies are evaluating the standards that establish allowable charge limits and the safe use of these A2L and A3 refrigerants.

Per a 2019 update from the International Electrotechnical Commission (IEC) to IEC60335-2-89, A2L and A3 charge limits have been increased for commercial refrigeration systems:

  • A2Ls — from 150g to 1.2kg
  • A3s — 500g for factory-sealed systems, and will remain at 150g for split systems

Similar efforts to raise A2L and A3 charge limits also are taking place in the U.S. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and Underwriters Laboratory (UL) are working to establish new charge limits and mitigations for the use of A2L and A3 refrigerants with support from industry and various stakeholders.

Once adopted, these standards will serve as the bases for codes that govern building, fire and other local authorities having jurisdiction (AHJ). It’s important to remember that building codes vary from state to state; thus, the adoption of flammable refrigerants ultimately may take place on local levels and may take years to accomplish.

Kigali Amendment not ratified in U.S.

In 2016, 197 member countries of the Montreal Protocol met in Kigali, Rwanda, and agreed on a global HFC phase-down proposal. The Kigali Amendment required ratification from at least 20 countries to take effect. To date, 92 countries (including many countries in the E.U., but not including the U.S.) have ratified it; it has been in effect for participating countries since Jan. 1, 2019.

According to industry estimates, ratifying the Kigali Amendment could create up to 33,000 jobs in the manufacturing sector by 2027 and have a positive impact on the U.S. economy. For these reasons, industry advocates are in favor of ratification and have demonstrated this through letters of support to both the Senate and the White House.

New HFC bills introduced in the U.S.

The U.S. Senate and the House of Representatives have each penned new bills that would put the EPA in alignment with the Kigali Amendment and restore the EPA’s authority to phase down the production and consumption of HFCs over a 15-year period.

  • Senate: American Innovation and Manufacturing Act of 2019 (S2754)
  • House: American Innovation Leadership Act of 2020 (HR5544)

While the future and timing of these new bills are uncertain, they offer the potential to re-establish a federal standard for HFC management, including guidelines for servicing, recovery, recycling and reclamation.

Industry appeals for consistency

Industry advocates, including the Air-conditioning Heating and Refrigeration Institute (AHRI) and the NRDC, have appealed for states to be consistent in their approach to adopting CARB’s rules. Establishing a unified framework for future refrigerant regulations would provide the certainty needed to help the industry and regulatory bodies move forward with a consistent approach. At Emerson, we’re actively involved in helping the HVACR industry evaluate and steer these proposals — in industry committees, stakeholder meetings and public comments.

 

Upgrade Compressors to Extend Commercial Refrigeration System Lifespan

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

ACHR News recently interviewed me for an article titled “Compressor Retrofits on the Rise in Commercial Refrigeration.” It featured a variety of perspectives on the merits of compressor retrofits versus total system replacement. The article can be found here.

When facility energy costs creep up, one of the first suspects is almost always the commercial refrigeration system. It’s a reasonable assumption to make. Over time, it’s very common for energy efficiency to decline as systems drift from their original commissioned performance baselines.

But that doesn’t make a total system replacement inevitable. Many food retailers are reclaiming energy efficiencies by pairing system recommissioning with a measurement and verification (M&V) program and targeted compressor upgrades. In the process, they can reduce energy consumption, improve system performance and reliability and extend the system’s lifespan without the capital investment and business interruption that a full system replacement would require.

Back to the (factory spec) basics

Prolonged use, normal wear and tear and migration from recommended setpoints can degrade efficiency over time. Recommissioning fine-tunes the refrigeration system so that it operates as intended. The process typically involves optimizing every setpoint, cleaning condensers and replacing damaged components. Often, operators can capture significant savings just by recalibrating their system to factory specifications.

Implementing an M&V program ensures those savings are sustainable. Energy-monitoring equipment that delivers real-time insights will help operators ensure their equipment stays in tune. When variances occur, contractors can quickly identify the root cause and address the issue. But just as important, they can use the data generated by the M&V program to make informed decisions on future improvements.

Greater efficiency through variable-capacity modulation

The next step is to enhance energy efficiencies in low- and medium-temperature racks by upgrading to a digital compressor with variable-capacity modulation or by adding a variable frequency drive (VFD). Often, the best candidates for replacement are fixed-capacity compressors that are underperforming or the smallest displacement compressors in each rack.

By adding a variable-capacity digital compressor or VFD to the mix, operators can:

  • Accurately match capacity to changing refrigeration loads
  • Improve case temperature precision
  • Reduce compressor cycling
  • Maintain tighter control over suction manifold pressures

One often overlooked solution is the option to add a VFD to legacy Copeland™ Discus and Copeland™ Scroll fixed-capacity compressors. Perhaps a more common solution is replacing one or even two underperforming fixed-capacity compressors with a digital compressor such as a Copeland Discus Digital or Copeland Scroll Digital compressor — both of which enable variable-capacity modulation to deliver significant energy savings.

When a leading supermarket chain tested the strategy on a 20-year-old, 45,000 square foot grocery store in Ontario, it found that:

  • Recommissioning reduced energy costs by 18%
  • Replacing two weaker units with Copeland Discus compressors reduced energy costs by an additional 16% and qualified the retailer for a local energy incentive program

The entire effort delivered an annual energy savings of more than $40,000.

Proven strategies for every situation

As other contributors to the article note, compressor upgrades (or retrofits) may not always be the right solution for every system. Depending on the age and condition of the equipment, a total system replacement may make more financial sense. This strategy would ensure all system controls and components are integrated and optimized for lower-GWP refrigerants.

Ultimately, choosing between a compressor retrofit or full system replacement should be a data-driven decision that operators make in consultation with their contractors. As a leader in commercial refrigeration and other cold chain technologies, Emerson can help operators maximize their return on that decision. We offer a full suite of components that boost energy efficiency and provide internet of things (IoT) capabilities for retrofits and new equipment alike. Our application engineers are available to answer questions related to refrigeration system performance, retrofit opportunities and strategies for maximizing energy efficiency.

Shedding Light on Food Safety During the Cold Chain Journey

MattToone_2 Matt Toone | Vice President, Sales & Solutions – Cold Chain

Emerson Commercial & Residential Solutions

Whether you’re a convenience store (c-store) operator, quick-service restaurant (QSR), or a fast casual or fine dining establishment, ensuring food quality and safety is imperative to your success. In this blog, the second of a three-part series based on a recent E360 article, Minimizing Food Safety Risks From Farm to Fork, I explore the environmental factors and conditions putting food at risk as well as the food safety regulatory landscape.

Shedding Light on Food Safety During the Cold Chain Journey

About one in six Americans contracts a foodborne illness every year. That’s 48 million people, or roughly the population of the New York, Los Angeles, Chicago and Dallas metropolitan areas combined.

For a restaurant or c-store, a single outbreak of foodborne illness can result in thousands (or even millions) of dollars in fines. Add to that the potential for damage to your brand, and it can easily take years to recover from an incident.

The challenge for foodservice operators is that they are stationed at the end of a very long cold chain. That’s why it’s essential for them to understand how and where food safety and quality are most at risk. Armed with this knowledge, they will be better positioned to ensure that food is safe upon receipt.

Multiple factors put food safety at risk

From production and processing to transportation and cold storage, it can take days or even weeks for food to journey from farms to kitchens. At every point in that process, food safety can be compromised.

Harvesting practices can accelerate food spoilage. Improper processing and unsafe handling can introduce bacterial pathogens, such as E. coli and listeria, into the cold chain. Cross-contamination during shipping, storage and handling can amplify the risk of foodborne illness.

Unsurprisingly, temperature also plays a major — and sometimes overlooked — role in food safety. Optimal temperature ranges for produce, meats, dairy and frozen foods must be strictly maintained throughout the cold chain to preserve food quality. Deviations at any point can be an invitation for bacterial growth, not to mention a shorter shelf life.

Of course, operators have no control over how food is handled or stored prior to receipt. But that doesn’t make them any less susceptible to bad headlines should an outbreak occur under their watch. What they can and should do is meticulously review data logs prior to receipt to ensure the shipments were maintained at optimal conditions. And until the food is sold to a customer, operators must continue to ensure they are following safe food storage and handling practices in their own kitchens.

Managing regulatory expectations

With so much at stake, it’s easy to see why foodservice is such a tightly regulated industry. For restaurants and c-stores, though, this means an ever-higher bar on food safety and quality standards. As a result, operators must understand and navigate a new landscape of transparency and traceability. This is especially true as the regulatory focus increasingly shifts from reactive measures to proactive prevention. Going forward, operators at all links in the cold chain can expect greater requirements for monitoring and documenting food safety.

But there’s good news for foodservice operators: technology is on their side. Advances in refrigeration science, increased automation and the rise of internet of things (IoT) technologies are making it easier than ever to manage, maintain and monitor consistent temperature controls within the cold chain. Moreover, with more data available, operators have greater visibility into the conditions their food was subjected to on its long journey. As a result, they will be less “in the dark” about the products they stake their brands on.

We’ll explore this further in my next blog, which will focus on the cold chain journey and the technologies that are putting improved food safety within reach.

How Restaurants and C-stores Can Deliver Safe, High-quality Food Offerings

MattToone_2 Matt Toone | Vice President, Sales & Solutions – Cold Chain

Emerson Commercial & Residential Solutions

Whether you’re a convenience store (c-store) operator, quick-service restaurant (QSR), or a fast casual or fine dining establishment, ensuring food quality and safety is imperative to your success. In this blog, the first of a three-part series based on a recent E360 article, Minimizing Food Safety Risks From Farm to Fork, I’ll explore the efforts involved in maintaining safety throughout the food supply chain.

How Restaurants and C-stores Can Deliver Safe, High-quality Food Offerings

Dining out has become an everyday part of American life. It’s estimated that more than one-third of us eat at a fast-food restaurant every day, and more than 60 percent have dinner at a restaurant at least once a week. As consumers are becoming increasingly discriminating about what they eat, restaurants are under more pressure to deliver fresh, healthy foods and in greater varieties. But, above all else, restaurant operators must ensure food is safe to eat.

Food’s journey to a customer’s plate (or a packaged take-out container) is fraught with hazards. Ensuring food safety is a cumulative effort shared by every stakeholder along the journey — from production and processing to transportation, cold storage and ultimately, the foodservice provider. Temperature deviations, unsafe handling practices and improper food preparation processes can all increase the potential for foodborne illness outbreaks.

Thankfully, improvements in refrigeration equipment and internet of things (IoT) technologies are helping to provide more reliable and consistent temperature and quality control within the cold chain. Throughout food’s journey, operators at each point are now able to monitor, control and track a variety of conditions necessary for preserving food quality, including: temperature, humidity, the presence of ripening agents, lighting and much more.

Meeting customer expectations

Modern restaurants and c-stores are being held to increasingly higher food safety and quality standards. Consumers and regulators alike are demanding greater transparency in the food supply chain, which includes improved traceability of food’s journey from farm to fork. To keep customers coming back, operators must not only consistently deliver safe, high-quality food but also openly disclose their suppliers.

Protecting against foodborne illness outbreaks helps to not only ensure your customers’ well-being, it also guards against potentially devastating impacts to your brand’s reputation and bottom-line profitability. As one of the final links in the food supply chain, restaurant operators must ensure that food is safe on receipt and adhere to safe food storage, handling and preparation processes in their kitchens.

This starts with understanding everything that contributes to food quality and safety throughout the cold chain. With today’s connected infrastructures and IoT-based monitoring and tracking capabilities, operators now have the potential for visibility into each step of the journey — even the possibility for comprehensive cold chain traceability. Then, once food has been received into inventory, this process continues by applying all the modern tools available to ensure food quality, safety and consistency.

Food supply chain safety is cumulative

It’s estimated that nearly half of the fresh fruit and one-third of the fresh vegetables consumed in the United States are sourced from foreign countries — transported by land, sea and air in a process that can span the point of harvest, processing, cold storage and distribution. Overseas shipments can last anywhere from two to four weeks; for domestic transportation, it can take three to four days to ship strawberries from California to the East Coast.

In total, these perishables can potentially undergo as many as 20 to 30 steps and multiple changes of ownership throughout the food supply chain process. The more these items change hands, or are staged, loaded and unloaded, the greater the chances for contamination and temperature excursions along the way.

In my next blog, I’ll take a closer look at the environmental factors and conditions putting food at risk as well as the food safety regulatory landscape.

 

Evaluate System Lifecycle Performance When Making the Decision to “Go Green”

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

I recently contributed to an ACR News publication with an article which addressed the topic of “green refrigeration.” The article, entitled A Greener Landscape for Commercial Refrigeration, explored why and how operators are making the transition to more eco-friendly refrigeration systems. View the full article here or read a summary below.

As global and national refrigeration industry dynamics continue to rapidly evolve, more business owners and supermarket operators are seeking new refrigerant and equipment alternatives. Ever-changing refrigerant and energy regulations, combined with an increased awareness of the environmental impacts of legacy refrigeration systems, are prompting more stakeholders to explore the green and growing edges of the refrigeration landscape.

But because commercial refrigeration systems can potentially be in service for decades, end users must carefully consider not only today’s regulatory requirements, but also tomorrow’s potential constraints. This means making the most informed equipment decisions possible with the goal of maximizing the investment throughout the system’s lifecycle. Doing so requires a fundamental understanding of the environmental impacts and financial considerations of a commercial refrigeration system.

Total equivalent warming impacts
While today’s regulations are primarily focused on reducing the global warming potential (GWP) from direct emissions of hydrofluorocarbon (HFC) refrigerants, it’s also important to remember that the total equivalent warming impact (TEWI) also accounts for indirect emissions — or the amount of greenhouse gases generated from the refrigeration system’s energy consumption. It’s estimated that these indirect emissions represent the majority of total climate impacts.

Only by evaluating both energy consumption and refrigerant GWP — including leaks and disposal — over the lifetime of a system can we estimate a system’s full lifecycle climate performance (LCCP).

Environmental and financial sustainability
Operators who are considering going green must also factor in the financial viability and sustainability of new or upgraded refrigeration systems. This means determining not only first costs and installation expenses, but also estimating the long-term maintenance and service requirements.

For manufacturers of these new eco-friendly equipment, components and systems, their task is twofold: 1) utilize lower-GWP refrigerants to meet regulatory requirements, while 2) minimizing ownership and operating costs.

Building a greener future
Like much of the commercial refrigeration industry, Emerson believes that the adoption of environmentally responsible, financially viable refrigeration systems will become more commonplace over the next decade. After all, there is a historic precedent for refrigerant phase-downs, including the ban on ozone-depleting substances which began in the 1990s and is now coming to fruition. Under the authority of the Montreal Protocol and the Environmental Protection Agency’s Clean Air Act, ozone- depleting substances like R-22 will no longer be manufactured or imported into the U.S. as of Jan. 1, 2020.

Today, the global reduction of fluorinated gases (aka F-gases) is being driven by the Kigali Amendment to the Montreal Protocol, which has now been ratified by more than 80 countries. As federal regulations continue to take shape and regional mandates become more prevalent throughout the U.S., it seems inevitable that the industry will eventually make the transition to more eco-friendly refrigeration systems.

Emerson has helped support this transition for many years by working with early adopters of low-GWP refrigerants and supporting technologies. Those operators who are taking proactive steps now will have a head start on this transition and be able to provide insights from which the rest of the industry can learn.

%d bloggers like this: