Skip to content

Posts from the ‘Supermarkets’ Category

[New E360 Webinar] Why Retrofit Your Aging Supermarket Refrigeration Architecture?

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

Many supermarket operators face a common dilemma regarding their refrigeration systems: they know they need to make changes or upgrade their legacy systems, but they’re not sure what their retrofit options are — or even where to begin. In our next E360 Webinar, I’ll offer guidance on how supermarket owners/operators can embark on this critical journey.

Join me on Tuesday, Aug. 13 at 2 p.m. EDT/11 a.m. PDT for this informative webinar.

[New E360 Webinar] Why Retrofit Your Aging Supermarket Refrigeration Architecture?

There’s no question that reliable refrigeration is the backbone of any supermarket operation; it accounts for more than 50 percent of the electrical consumption for an average supermarket. That’s why keeping your refrigeration system running at optimal efficiency is essential to maximizing profits and ensuring operational success.

But if you’re like many owners/operators, you’ve been relying on the same centralized refrigeration architecture for decades. During that time, these systems have typically experienced declining performance levels and energy efficiencies — all due to progressive deviations from their original commissioned states. And while these systems are perfect candidates for an upgrade or a retrofit, even newer systems can offer opportunities for improvements, especially within the context of today’s rapidly evolving industry and market dynamics.

Compared to just 10 years ago, the drivers behind refrigeration decisions have changed dramatically, and the days of a one-system-fits-all mentality are quickly becoming a thing of the past. Environmental concerns, energy costs, shifting regulations, shrinking store formats, consumer demands and omnichannel delivery have all irrevocably reshaped the supermarket landscape.

As a result, more supermarket owners/operators are reevaluating their existing (and often aging) systems while looking for any retrofit opportunities that are available to them. Our next E360 Webinar is designed with them in mind. To help you better understand the many factors to consider when evaluating a supermarket refrigeration retrofit, I’ll be discussing the following topics:

  • Industry and market trends driving the need for refrigeration system retrofits
  • How to identify deficiencies and baseline performances in centralized architectures
  • A look at the potential architectures of the future
  • Recommended technologies for retrofits and recommissioning
  • Energy-efficiency strategies for refrigeration, HVAC and the complete building envelope

As always, we will take time after the presentation to answer any of your questions. So, be sure to register now and add this event to your August calendar.

Six Steps to a Successful Refrigeration Retrofit

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

This blog summarizes an article from ACHR NEWS, entitled “Refrigeration Retrofits Offer ‘Cool’ Savings for Supermarkets.” Click here to read the article in its entirety.

The commercial refrigeration system is the biggest energy user in supermarkets, accounting for about 40 to 60 percent of electricity consumption, according to the Environmental Protection Agency (EPA). For food retailers, getting energy consumption under control is a top priority, and the refrigeration industry has stepped in with new, higher-efficiency equipment and technologies, such as advanced monitoring and control via the internet of things (IoT). However, for many retailers, virtually all their equipment is aging, and buying new equipment and systems across the board would be prohibitively expensive. But there is another path to saving a considerable amount of energy: targeted retrofits or upgrades to their existing systems.

Some energy-saving modifications can be simple and obvious, such as adding doors to cases. But at a recent Emerson E360 Forum, I explained how a systematic approach to retrofits and upgrades can identify savings throughout a store’s entire refrigeration infrastructure, particularly older, energy-demanding direct expansion (DX) centralized systems. It is a six-step process that reveals the primary causes of energy loss and, step by step, proposes energy-saving retrofits and upgrades to your system that can systematically reduce energy costs without breaking the bank.

  1. Conduct a baseline energy audit throughout the store by installing energy-monitoring equipment. These sensors help you analyze the existing energy signature of the entire store before you make any adjustments or retrofits, and will also be invaluable for future temperature monitoring and control to ensure food safety and quality.
  2. Recommission your existing equipment to factory specifications. This may include adjusting setpoints, superheat, suction pressure and other settings. In the process, any broken components can be repaired. This one step alone can result in energy savings of 18 percent or more.
  3. Upgrade your refrigeration technologies. One effective upgrade is changing discus compressors to digital compressors. This single retrofit can reduce compressor cycling, increase system reliability, and improve energy efficiency by 16 percent or more. Installing variable-frequency drives on condenser fan motors can save even more.
  4. Upgrade your HVAC system. Ambient store temperatures are major stressors on refrigeration systems. Consider upgrading rooftop units and adding demand-controlled ventilation and humidity controls. Integrating the rooftop units with the refrigeration system in the store is another option, creating a self-contained ecosystem that balances ambient and refrigeration temperatures for significant energy savings.
  5. Upgrade lighting and other renewables. Adding modern lighting technology lowers temperatures. Installing doors onto units lowers energy losses. Electronic case controls and expansion valves (EEVs) fine-tune equipment temperatures, while upgrading to electronically commutated (EC) motors lowers electricity consumption while improving equipment efficiency.
  6. Perform condition-based maintenance. Once you’ve migrated to these capital upgrades, it’s important to step up your regular maintenance intervals to continue your gains in efficiency and cost savings.

With these targeted retrofits and upgrades, you can systematically make your centralized DX system more effective in maintaining food quality and safety while simultaneously uncovering efficiencies that can result in significant savings.

Smaller Supermarket Formats Dictate Fresh Refrigeration Approaches

JohnWallace_Blog_Image John Wallace | Director of Innovation, Retail Solutions

Emerson Commercial & Residential Solutions

Meeting the demands of emergent small-format supermarkets requires a new approach to — or adaption of existing — refrigeration architectures. This blog is based on a recent article that discusses available options. Read the full article here.

One of the biggest trends shaping the food retail industry is the shrinking store footprint. Instead of building large mega centers that once dominated the landscape, today’s retailers are opting to extend their brands into smaller stores, typically in densely populated areas. The small-format trend is part of a larger evolution — one that emphasizes high-quality, fresh, perishable offerings while appealing to consumer desire for more convenience.

Food retailers that are embracing these changes must also evaluate how their approaches to refrigeration architectures and controls will also need to adapt. Fortunately, there is no shortage of available options to help operators make this transition.

Scale down for “centralized” familiarity
A traditional big-box supermarket has more than 100 cases (a mix of medium- and low-temperature cases) supported by centralized refrigeration racks and controls designed to optimize large systems of this type. If you shrink these systems down for smaller formats with less merchandise, it stands to reason that you may not need as many racks. With stores shrinking from more than 100,000 to less than 20,000 square feet, they simply won’t need the same refrigeration horsepower.

In many cases, operators may still want to use centralized architectures for both medium- and low-temperature cases, but appropriately scaled down to suit the small format. Often, we’re able to design a system with one rack to manage medium- and low-temperature needs. Since it’s a much smaller centralized system to support fewer case lineups, it has much shorter refrigeration lines running out to the cases.

From a system controls standpoint, this smaller centralized architecture isn’t drastically different, so retailers can achieve relatively the same look and feel in both large and small store formats — while also providing the flexibility to scale across the full spectrum of store sizes.

Explore “distributed” efficiencies

While distributed refrigeration systems have been preferred in large supermarkets in Europe and other global regions, they are also well-suited for the small-format emergence in the U.S. Distributed architectures come in different formats and offer a cost-effective refrigeration strategy for smaller stores. Preferred distributed architectures include:

  • “Self-contained” cases (i.e., a completely integrated refrigeration system within the case); also provide spot-merchandizing flexibility
  • Modular refrigeration systems capable of supporting small lines of cases sharing similar characteristics

Distributed architectures also have a greater impact on the way controls are set up and utilized. In a distributed scenario, electronic controllers are installed at the refrigeration cases. Additional sensors are typically required to capture data, allow for better control, and support remote troubleshooting activities.

Standardize your footprint

When adding smaller-format stores to an enterprise network, it may not be in your best interest to introduce a completely new refrigeration and controls platform. For retailers with multi-site networks of large- and small-format stores, it’s especially important to select refrigeration architectures and control platforms that provide a standardized view.

When evaluating refrigeration options, look for platforms that support the evolution of internet of things (IoT) in refrigeration and facility management. These systems represent the next generation of operational efficiencies by offering cloud connectivity, predictive maintenance and advanced multi-site management software.

 

How to Create the Perfect Climate in Supermarkets

ronchapek_2 Ron Chapek | Director of Product Management/Enterprise Software

Emerson Commercial & Residential Solutions

I recently participated in an article for Winsight Grocery Business, which discussed the importance of keeping refrigeration and HVAC systems in harmony. Click here to read the full article.

How to Create the Perfect Climate in Supermarkets

Refrigeration and HVAC costs are among the biggest operational expenses a supermarket faces. The reasons? People create warmth. Refrigeration creates cold. Humidity creates wetness. And in supermarkets, HVAC systems constantly struggle to maintain the right temperature and humidity for people, equipment and products. With proper management and planning, supermarket operators can balance these factors and even optimize HVAC and refrigeration systems to work in coordination with each other.

 The battle between HVAC and refrigeration

In most buildings, the job of an HVAC system is to maintain a comfortable indoor temperature for customers and staff. But HVAC systems face unique challenges in supermarkets. Coolers, refrigerated display cases, freezers and other units (particularly those without doors), pour cool, dry air into stores. This isolated cold air stresses HVAC systems year-round, as they have to increase heating during winter — burning a lot of energy — while leaving uncomfortably cold spots, even in summer. Your refrigeration equipment alters an HVAC load in ways most systems aren’t designed to handle.

Adding doors or replacing open units can reduce both the load and energy costs. But adding doors creates a different problem: they often fog up — which forces shoppers to open the doors to see what’s inside — defeating the whole purpose of having a door. Fog and frost occur when humid weather, steamy shoppers and chilly air collide.

A foggy situation

Door fogging is a symptom of a very tricky problem: keeping in-store relative humidity (RH) at the proper percentage. If humidity is too high, doors fog over and cooling coils frost up, forcing units to overwork. If the humidity gets even higher, water can condense on floors, walls and even dry-goods packaging. But if the RH is too low, the overly dry air can shorten the shelf life of fresh produce or wilt it.

Moisture, relatively

Almost all the humidity inside a store comes from moister outside air, and it’s up to HVAC systems to lower that humidity to a slightly dry 45 percent RH — and that’s not easy.

The simplest way to do this is to super-chill incoming outside air, because as air cools, its humidity drops. But this wastes energy in two ways: it increases the refrigeration load on the HVAC and can chill the entire store. So, the air first has to be reheated before entering the store, producing yet another energy expense.

Another option to use a desiccant system in the HVAC unit to remove moisture. These systems are effective and reliable, but they require a lot of energy, especially for large spaces like supermarkets.

Harvest-free heat

The article describes a simpler, cheaper solution. The compressors on your refrigeration equipment generate a lot of heat as they compress refrigerants. This excessive heat is usually vented outside the building, wasting a source of free heat. Today, systems can recycle, treat and mix this hot air to create ideal store temperatures and RH — at much lower overall costs.

Advanced systems harvest excess hot air in various ways. Some use the hot vented air instead of the HVAC heater to reheat super-cooled, dehumidified air and reduce reheating costs. Some systems use heat exchangers to recycle the vented hot air to heat a supermarket during cold weather. “Single-path” systems super-chill a limited volume of humid outside air to dry it, then mix it with uncooled air to produce just the right temperature/RH mix. Another system uses two cooling coils, one to cool the hot air as it’s being vented outside, so it can mix with outside air to reach optimal temperature and RH. The incoming air needs little heating or cooling as it reaches the second coil, which greatly reduces the workload on the HVAC system.

Instead of adding to your HVAC system’s workload, your refrigeration equipment can actually help reduce the load, lower your costs, and create the ideal climate for shoppers, employees and facility managers.

 

How to Transition Into the Future With HFO Blend Refrigerants

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

I was recently interviewed for an article in the ACHR News, “HFO Sightings: Refrigerant Retrofits Becoming More Common in Supermarkets,” which discusses steps that can smooth a supermarket owner’s transition to sustainable and compliant HFO blend refrigerants.

How to Transition Into the Future With HFO Blend Refrigerants

What refrigerant changes are coming, and which should you choose?

The R-22 refrigerant is in its final days, and will be officially phased out at the end of next year. There’s also a good chance that hydrofluorocarbon (HFC) refrigerants will also be phased down in the U.S. in the years ahead, as their use continues to be limited in different countries and regions around the globe. Many supermarket owners see the writing on the wall and are starting to transition to lower-global warming potential (GWP) refrigerants — particularly if they are uncertain about counting on the availability of HFCs or concerned about a potential rise in the cost of these refrigerants. Others simply seek to transition to more eco-friendly refrigerants that align with corporate sustainability objectives.

That is why many store owners are choosing to retrofit their existing equipment to use hydrofluoroolefin (HFO) blends, which compare well with HFCs in terms of performance but offer advantages in the forms of energy efficiency, environmental-friendliness and future availability.

However, HFO blends are not drop-in refrigerants. Equipment usually has to be modified before it can be used. Not all equipment is equally easy to retrofit, and not all HFO blends are the same. The ACHR News article lays out clear guidelines to help you navigate among HFO blend options and retrofit processes.

No two retrofits and no two refrigerants are alike

As I point out in the article, HFOs have very different characteristics than HFC or hydrochlorofluorocarbon (HCFC) refrigerants. Some HFOs are classified as A1 (non-flammable) while others fall into the A2L (mildly flammable) category; many have temperature glide characteristics to consider. In addition, many HFO blends have been developed to replace specific HFC refrigerants — for example, R-448A and R-449A are designed to replace R-404A — and there are small capacity and efficiency differences that may vary based on the specific refrigeration application. That said, with the right RFO blend and the right modifications, many systems will continue to operate reliably for years after the retrofits. The age and condition of the equipment should determine if they are good candidates for a refrigerant retrofit.

Making the change

If you are interested in transitioning to an HFO blend, it’s essential to find out if your equipment is compatible with a given blend. There are specific HFO blends designed to replace the most common HFCs, depending on the type of equipment and the refrigeration application. However, not all HFCs can be replaced with an HFO, and in some instances, equipment may require major modifications.

For that reason, you need to consider the specific characteristics of each refrigeration application, the replacement HFO blend, and their impact on system performance to make sure you continue operating within your equipment’s design specifications. For example, a new blend could cause a higher discharge temperature, which could require investing in supplemental compressor cooling. That’s why you should consult with the equipment manufacturer and your refrigerant vendor about compatibility before making any transition.

Manufacturers such as Emerson conduct stringent R&D and testing of RFO blends in their compressors and other components before they are deemed “ready to use” in a retrofit. Because you may be changing the refrigerant for which the units were initially designed, you should also ask about the status of your warranties and the potential impacts before commencing a retrofit.

When you’re ready, the ACHR News article provides a more detailed guide to the retrofit process for you and your refrigeration contractor, from evaluating the system type, design and application for a compatible HFO blend, to charging a unit with its new refrigerant and fine-tuning the equipment.

Retrofitting the future

As regulations surrounding refrigerants continue to evolve, most retailers recognize that moving to HFO blends is one of their best long-term solutions for a large installed base of refrigeration equipment. With a range of safe and environmentally sustainable HFO blends available as replacement refrigerants for HFC-based systems, converting your systems to low-GWP HFO blends is the quickest and cheapest way to achieve a large overall reduction in your future carbon footprint.

%d bloggers like this: