Skip to content

Posts tagged ‘“Alternative Refrigerants’

Preparing for the Future of Alternative Refrigerants

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

 

Regulations governing the use of refrigerants in commercial refrigeration remain in a state of flux. While the United States currently lacks a federal mandate for phasing down hydrofluorocarbon (HFC) emissions, many states are already vowing to adopt their own HFC phase-down initiatives. In a new article in RSES Journal, I highlight several proven sustainable refrigeration strategies that operators should begin evaluating now as they prepare for a future that will be fueled by systems that utilize refrigerants with lower global warming potential (GWP). Read the article here.

060220-P-Man_Opening_Fridge_1200x630-V2

It’s clear that the future favors more environmentally friendly refrigeration systems. But the lower-GWP refrigerants and emerging architectures that comprise these systems are up for debate in the United States, where state-led efforts to curb climate change could result in a patchwork of environmental regulations.

The good news for owners and operators is that, even absent federal guidance, component manufacturers, OEMs, contractors and end users are leading the charge. For more than a decade, industry stakeholders have been developing and fine-tuning lower-GWP refrigerants and corresponding technologies to satisfy a range of applications, store formats and corporate sustainability goals.

The resulting proliferation of sustainable refrigeration systems is providing operators with more options than ever before. But as the one-size-fits-all solutions of the past give way to a broader array of strategies, operators need to become experts on alternative refrigerant technologies and architectures — all while trying to predict where future environmental regulations will land. While this may sound like a daunting task, it can be made easier by building a baseline understanding of current and emerging systems.

An expanding set of sustainable refrigeration strategies

Whether motivated by potential regulatory changes or corporate sustainability goals (or both), operators have no shortage of lower-GWP refrigerant systems from which to choose. Proven, viable alternatives to HFC-based systems already on the market include:

  • Lower-GWP A1s (HFO/HFC blends): By blending hyrdrofluoroolefins (HFOs) with HFCs, refrigerant manufacturers have created a new generation of lower-GWP A1 alternatives. These refrigerants do not satisfy the very low-GWP levels of many global HFC regulations, but they do allow for a gradual transition to lower-GWP refrigerants. Refrigeration architectures that use A1 refrigerants include macro-distributed (large) integrated cases, micro-booster (distributed) and small-charge distributed cases.
  • A2L HFO blends: New synthetic HFO blends offer widespread applicability within commercial refrigeration for operators seeking lower-GWP alternatives. U.S. safety codes and standards are still catching up to their use, but many operators anticipate A2L blends will emerge within the next several years. Both macro-distributed and micro-booster architectures that use A1 refrigerants can be used with some A2L blends, enabling operators to maximize their investment as they adopt lower-GWP alternatives.
  • Propane (R-290): This natural refrigerant is energy-efficient and has a very low GWP of 3. Because it’s classified as an A3 (flammable) refrigerant, U.S. building codes currently limit its use to small-charge applications — and that may require more compressors than other approaches. R-290 can be paired with micro-distributed, R-290 integrated cases, which allow for flexibility in store layouts and use 90% less refrigerant than centralized systems.
  • CO2 (R-744): A proven alternative in European and North American applications, CO2 is nonflammable and nontoxic. It also has a GWP of 1, meaning it satisfies current and potential future regulatory requirements. It can be used with CO2 transcritical booster systems — where CO2 provides both low- and medium-temperature cooling — and CO2 sub-critical (cascade) architectures that utilize an HFC or HFC/HFO blend on the medium-temperature side of the system. Both systems are particularly beneficial for large-format supermarkets where a centralized architecture is preferred. However, due to their higher pressures, these systems require access to a trained, skilled workforce for service and maintenance.

Staying ahead of the curve

Emerson is at the forefront of engineering a future that supports the entire spectrum of refrigeration strategies. We’ve been partnering with equipment manufacturers and end users alike to develop future-ready, low-GWP refrigerant technologies to support operators at every stage of their transition to a lower carbon footprint.

From our wide range of energy-efficient compressors, flow controls and smart electronics to fully integrated solutions, we’re providing our customers with the ability to implement sustainable refrigeration strategies that support their unique facility requirements, business objectives and regulatory requirements.

[Webinar Recap] Preparing for the Future of Refrigeration

AndrePatenaude_Blog_Image Andre Patenaude | Director, Food Retail Marketing & Growth Strategy, Cold Chain

Emerson Commercial & Residential Solutions

Commercial refrigeration architectures are changing. Environmental regulations and corporate sustainability objectives are driving the need for next-generation refrigeration technologies. Today, most commercial refrigeration end users are still operating legacy, centralized direct-expansion (DX) rack systems — which contain refrigerants that either have high global warming potential (GWP) or ozone depletion potential (ODP). In our most recent E360 Webinar, Diego Marafon, refrigeration scroll product manager at Emerson, and I discussed new refrigeration architectures that utilize eco-friendly refrigerants.

12127-LatestWebinar_1200x630

In many countries, regions and U.S. states, the transition from high-GWP refrigerants is underway. While legacy refrigerant options such as hydrofluorocarbon (HFC) R-404A are being phased down, hydrochlorofluorocarbons (HCFCs) such as R-22 are being phased out. To meet sustainability targets, future refrigeration options will utilize a variety of emerging lower-GWP refrigerants, including A1s, A2Ls and natural options such as CO2 and propane.

End users must evaluate a wide range of operational, maintenance and economic criteria when selecting an alternative refrigerant or future refrigeration architecture. Based on Emerson-sponsored research on commercial refrigeration end users, we’ve classified these criteria into six categories called the Six S’s: simple to operate and maintain; environmentally and economically sustainable; stable, reliable performance; secure in terms of both technology and safety perspectives; serviceable without requiring specialized skills or training; and equipped with smart technologies for internet of things (IoT) communication. The levels of importance that each end user places on these factors will determine their selection criteria and the types of systems that meet their business objectives.

Emerging architectures and technologies

Aside from CO2 systems, which have been in use for more than a decade, many of the emerging technologies take a decentralized or distributed approach to system architectures. Overall, this strategy moves the refrigeration equipment closer to the refrigerated cases, requires much less refrigerant charge (and piping), and offers a higher degree of flexibility over centralized DX systems. Here is a brief description of some of the decentralized or distributed architectures we reviewed in the webinar:

Low-charge small scroll racks — These systems have been in place for more than 20 years due to their equipment placement flexibility. Multiple-rack units can be placed in proximity to refrigerated loads, allowing suction pressures to be optimized and drive energy efficiencies. Refrigerant charges are smaller, so leaks can be contained to each rack’s individual circuit. They are capable of using multiple refrigerants with varying lower-GWP ratings.

Outdoor condensing units (OCUs) — This well-known approach has been proven for decades and is evolving to meet modern refrigeration needs. OCUs have traditionally been used for smaller refrigeration loads — one unit per load — and many retailers use multiple OCUs to cover individual loads throughout a store. Lower-GWP A1 refrigerants such as R-448/9A can be used for low-temperature applications; low- or medium-pressure refrigerants can be used for medium-temperature applications.

Variable-capacity OCUs — Digital compressors which provide variable-capacity modulation are now being used in OCUs to service multiple refrigeration loads per store. This added range of capacity greatly expands upon traditional remodel and rebuild options — in convenience stores, restaurants, small supermarkets, and click-and-collect operations — and offers the ability to replace three separate condensing units with one. Locating these OCUs in proximity to the refrigerated loads helps keep charge low, allowing them to meet even the most stringent environmental regulations. Variable-capacity modulation enables precise temperature control and excellent load matching capabilities for maximum energy efficiencies. See the Copeland™ Digital Outdoor Refrigeration Unit, X-Line Series for more information.

Distributed micro-booster — This hybrid indoor/outdoor architecture utilizes proven booster technology — typically found in CO2 systems, however new innovative concepts permit the use of low GWP, low-pressure A1 refrigerants for both low- and medium-temperature loads while offering a familiar operation and maintenance footprint. The system utilizes outdoor condensing units for medium-temperature coolers and low-temperature compressors which are located directly on or above the frozen cases. Low-temperature compressors discharge into the nearest medium-temperature suction group, thereby eliminating the need to discharge all the way out to a remote condenser. This allows refrigerant charges and pressures to stay very low, while utilizing one low-GWP A1 refrigerant such as R-513A. Emerson has tested these systems in multiple locations and configurations, where they deliver exceptional performance and energy efficiencies.

Indoor distributed architecture — This flexible configuration utilizes self-contained condensing units located on or near refrigerated cases, islands or prep tables — with refrigerant options, including low-GWP A1s and R-290 (subject to allowable charge limits). Stores with multiple cases can be connected via a shared water or glycol loop to extract heat from each unit and divert it to a remote condenser/cooler. The inherent modular nature of this architecture limits leak rates and keeps charges very low while enabling a very simple, reliable and scalable operational footprint. See the award-winning Copeland Indoor Modular Solution for an end-to-end modular capability that provides seamless integration of refrigeration equipment with Emerson facility controls.

For more detailed information on any of these refrigeration architectures or their enabling technologies, view this webinar in its entirety.

%d bloggers like this: