Skip to content

Posts tagged ‘Earth Day’

5 Earth Day Steps to Greener Refrigeration

RajanRajendran2 Rajan Rajendran | V.P., System Innovation Center and Sustainability

Emerson Commercial & Residential Solutions

Every year on April 22, nations around the globe pause to recognize Earth Day and reflect on the importance of preserving the planet’s environment. This year will mark the 50th anniversary of the annual Earth Day commemoration; its theme is “climate action”. According to the organization’s website, “Climate change represents the biggest challenge to the future of humanity and the life-support systems that make our world inhabitable.” Thus, action is essential for mitigating the damaging impacts of climate change.

12358-EMR_EarthDayBlog_GirlandWorld_1200x630

For decades, the commercial refrigeration industry has taken a global focus on climate action. In 1987, the Montreal Protocol set out to ban the use of refrigerants with ozone depletion potential (ODP) — and as of today, these efforts have proved extremely effective. But in 2020, our industry has a new environmental mandate: to phase down the use of hydrofluorocarbon (HFC) refrigerants with high global warming potential (GWP). The Kigali Amendment to the Montreal Protocol was enacted to do just that; since 2019, 20 countries are participating in these measures. At the same time, other countries have adopted their own HFC phase-down regulations, and states like California are leading the charge here in the United States.

But while the environmental focus is often on refrigerants, it’s important to understand that refrigeration must be evaluated from its total equivalent warming impact (TEWI), which considers both the impacts of refrigerants and the energy efficiency of a system throughout the lifecycle. For decades, Emerson has been committed to promoting sustainable and environmentally friendly refrigeration. Here are five best practices that we promote to achieve greener refrigeration strategies.

  1. Recommission your refrigeration system. Over time, refrigeration systems can drift steadily from their original commissioned performance baselines. It’s important to make sure systems are operating as efficiently as possible before considering any upgrades such as replacing a compressor. Recommissioning returns the system back to its original operating parameters and establishes a necessary baseline from which ongoing improvements can be made.
  2. Implement an energy measurement and verification (M&V) program. The decision to upgrade or replace a compressor must be evaluated from a holistic assessment of the refrigeration system. To gain deeper insights into system performance, we recommend implementing a formal measurement and verification program in tandem with the recommissioning process. An M&V program helps to identify holistic system energy-efficiency data and evaluate individual compressor performance, which operators can use to potentially qualify for an energy incentive program. Participating utilities may offer rebates for replacing inefficient equipment with newer, energy-efficient models.
  3. Retrofit to variable-capacity modulation. After identifying the low- and medium-temperature compressors that are underperforming, the next step would be to upgrade them to enable a variable-capacity compression strategy — either by upgrading to a digitally modulated compressor or adding a variable frequency drive (VFD). Replacing even one fixed-capacity compressor with a variable-capacity digital compressor can result in significant benefits, such as: improved energy efficiencies, precise matching of capacity to changing refrigeration loads, improved case temperature precision, reduced compressor cycling (on/off), and tight control over suction manifold pressures.
  4. Enable low-condensing operation. One often overlooked strategy — which is also factoring into some environmental regulations — is the practice of low-condensing operation (aka floating the head pressure). Instead of operating at a high fixed head pressure regardless of the ambient temperature, low-condensing operation floats the head pressure down as the ambient temperature drops — in the evening, overnight and early morning hours. This best practice utilizes electronic expansion valves (EEVs) that allow for dynamic control so that the system is no longer operating at maximum capacity during periods of cooler ambient temperatures. As a result, compressor capacity increases while wattage consumed decreases. In fact, operators can realize lower costs through energy efficiency ratio (EER) improvements of 15–20% for every 10 °F decrease in head pressure.
  5. Transition to lower-GWP refrigerants. Preparing for the future of refrigeration means transitioning from higher-GWP HFC refrigerants to lower-GWP alternatives. Of course, doing so will require adopting new refrigeration technologies and system architectures. From self-contained, integrated cases which utilize natural, hydrocarbon refrigerants to proven CO2 transcritical booster systems and new distributed micro-booster systems that use lower-GWP refrigerants with familiar operating properties, there are a wide variety of emerging systems capable of addressing the full range of commercial refrigeration applications.

Emerson is committed to developing innovative refrigeration technologies and helping commercial refrigeration stakeholders adopt more sustainable refrigeration strategies. We’re actively developing solutions that address all the best practices listed above, and we’re working to promote future refrigeration technologies that will help our customers meet their unique sustainability goals.

 

Earth Day and Refrigerants: A Look Back — and Forward

Jennifer_Butsch Jennifer Butsch | Regulatory Affairs Manager

Emerson Commercial & Residential Solutions

It’s Earth Day, which means we should all take a minute to reflect on how we can do our part to make the planet a greener place. In the world of commercial refrigeration, environmental initiatives and sustainability best practices typically focus on limiting the harmful effects of hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants. When these refrigerants leak into the atmosphere via direct emissions, their environmental impacts can be measured in terms of ozone depletion potential (ODP) and global warming potential (GWP).

But when considering the total equivalent warming impact (TEWI) of commercial refrigeration systems, direct emissions are only part of the equation. TEWI also considers indirect impacts, or the greenhouse gases generated from the energy consumed to run these systems — estimated to represent as much as 95 percent of the total climate impact. At Emerson, we take both energy efficiency and refrigerant GWP into consideration to evaluate the full lifecycle climate performance (LCCP) of a system and its fluids.

Montreal Protocol to complete R-22 phaseout

Today, most global refrigerant regulations are focused on phasing down high-GWP HFCs. But it’s important to remember that these activities have a precedent that’s more than three decades old. In 1987, the Montreal Protocol treaty aimed to phase out ozone-depleting substances (ODS), such as the commonly used HCFC, R-22. This global treaty was since ratified by 197 countries, including the United States, Canada and Mexico, all of whom have followed its recommended phaseout schedule.

The next step in this process will take place in 2020, when the production and import of R-22 will no longer be allowed under the Environmental Protection Agency’s Clean Air Act. It may come as a surprise to some, but there are still untold operators with older refrigeration systems that are currently charged with R-22. Unlike smartphones and other commodities that we change or upgrade every year,  commercial refrigeration equipment can have a lifespan of 20 to 30 years. This phaseout will likely lead to an increase in system retrofits in the near term, especially as operators exhaust their supplies of R-22.

Thankfully, there’s a good deal of evidence that since the removal of ozone-depleting substances from the environment began, the ozone layer is on the mend. Some estimates state that the ozone hole above Antarctica could close by the 2060s.

HFCs targeted for global warming potential

As the HCFC phaseout began decades ago, the industry transitioned to HFCs with very low ODP. Unfortunately, many of these have since been discovered to have varying degrees of GWP. In fact, the most common HFC used in commercial refrigeration is R-404A, which has a GWP of 3,922 and is considered on the high end of the GWP scale. It’s no surprise then that it was among the first refrigerants to be targeted for phasedown under the EPA’s Significant New Alternatives Policy (SNAP) rules 20 and 21.

But per the 2018 ruling by the U.S. Court of Appeals, the EPA no longer has the authority to regulate the use of refrigerants based on their GWP under the framework of the Clean Air Act. While we expect the EPA to soon provide clarity on the future of its HFC initiatives, there currently is no federal mechanism through which the proposed phasedown of high-GWP refrigerants will take place.

In the meantime, California has adopted the original EPA SNAP framework into law, and as of January 1, R-404A and R-507A are no longer allowable in many new commercial refrigeration applications. California is just one of 23 states or territories in the U.S. Climate Alliance that are making commitments to enforce similar climate protection initiatives. Currently, this growing alliance represents half of the U.S. population and more than 50 percent of the national GWP.

Globally, the Kigali Amendment to the Montreal Protocol seeks to expand the treaty’s scope from just ozone protection to addressing global warming by phasing down short-lived climate pollutants, including HFCs. While this amendment has yet to be ratified by the United States, it has achieved the required ratification of 20 member countries to take force — including Canada and the United Kingdom, among others. For participating countries, the Kigali Amendment took effect on January 1.

Exploring the alternatives

Because regulatory variances occur from state to region to country, there are vastly different levels of environmental awareness throughout our industry. While operators in California are cognizant of the state’s efforts to phase down HFCs, there are many U.S. areas where transitioning to lower-GWP refrigerants isn’t as high of a priority.

Regardless, many top retailers have begun the process of exploring low-GWP refrigerant options as part of their sustainability objectives. Not only do they have retrofit plans in place, some are even trialing alternative refrigerant architectures in their stores — with hydrofluoroolefins (HFOs), HFO/HFC blends and natural refrigerants as leading options.

There are relatively minimal retrofit requirements when moving from R-404A to R-448A/R-449A — both A1 HFC/HFO blends — such as adding compressor cooling and other minor system changes. For a greenfield location or a complete system overhaul of an existing site, operators may consider one of many emerging low-GWP options, including:

  • Low-charge ammonia chillers on the roof
  • A2L (mildly flammable) blends in chillers on the roof and machine rooms
  • Distributed, small-charge systems with both A1 and A2L refrigerants
  • R-290 integrated cases outfitted with micro-distributed systems
  • CO2 transcritical and/or cascade systems using CO2 for low temperatures, and an HFO (or lower-GWP HFC) for medium temperatures

 

Refrigerant management best practices

As always, proper refrigerant management practices are important, regardless of the type of refrigerant used. Operators should start with a documented leak detection plan that includes the necessary tools and early-detection methods to identify and quickly respond to leaks. Leaks are not only bad for the environment; they also degrade refrigeration performance and system energy efficiencies.

With the new class of refrigerants, it’s especially important that technicians are trained to understand proper handling, charging and performance characteristics. In addition, as systems charged with higher-GWP HFCs eventually reach the end of their lifespans, it’s critical that service technicians follow proper recovery and disposal protocols.

Earth Day is a good time to reflect on the environmental progress our industry has made. At Emerson, we’ll continue to support sustainability objectives with compressors, components and systems that are both environmentally responsible and economically viable.

%d bloggers like this: